The Model

Efficient Training

 $\begin{array}{l} \mathsf{Experiments} + \mathsf{Conclusions} \\ \texttt{000000} \end{array}$

max planck institut informatik

Transductive Support Vector Machines for Structured Variables

Alexander Zien*† Ulf Brefeld[‡] Tobias Scheffer[‡]

 * MPI for Biological Cybernetics, Empirical Inference Dept.
 † Friedrich Miescher Laboratory, Machine Learning for Bioinformatics ‡ MPI for Informatics, Research Group Machine Learning

June 21, 2007

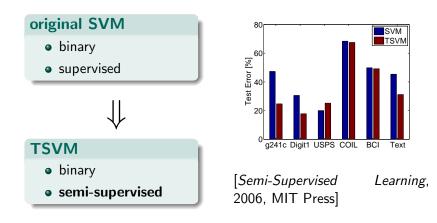
The Mod 0000 Efficient Training

Experiments + Conclusions

Support Vector Machine

original SVM

- binary
- supervised



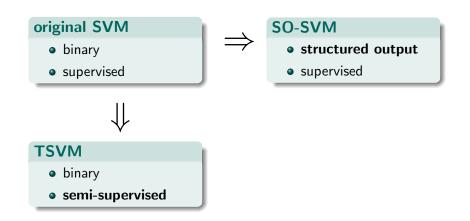
- True multiclass (not 1-vs-rest or 1-vs-1).
- Accurate label sequence learning [Nguyen, Guo; ICML 2007].
- More complex structures (eg parse trees, RNA secondary structures).

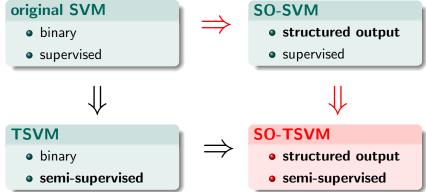
The Model

Efficient Training

Experiments + Conclusions

Orthogonal SVM Extensions





Why SO-TSVMs?	The Model 0000	Efficient Training 00000000	Experiments + Conclusions
Outline			

1 Why Semi-Supervised Structured Output SVMs?

- SO-TSVM The Model
 - Structured Output SVM
 - Semi-Supervised Structured Output SVMs

In Efficient SO-TSVM Training

- Unconstrained SO-TSVM Objective
- Differentiable SO-TSVM Training
- Kernelized SO-TSVM in the Primal
- Conjugate Gradient Working Set Algorithm

4 Experiments and Conclusions

- Accuracy Sometimes Unchanged...
- ...and Sometimes Improved

Use joint feature map $\Phi : \mathcal{X} \times \mathcal{Y} \to \mathcal{H}$.

Training: find w such that

$$\forall_i: \ \forall_{\bar{\mathbf{y}}_i \neq \mathbf{y}_i}: \ \mathbf{w}^\top \Phi(\mathbf{x}_i, \mathbf{y}_i) > \mathbf{w}^\top \Phi(\mathbf{x}_i, \bar{\mathbf{y}}_i)$$

Prediction:

$$\mathbf{x} \mapsto \mathbf{y} := \arg \max_{\mathbf{y}} \mathbf{w}^{\top} \Phi(\mathbf{x}, \mathbf{y})$$

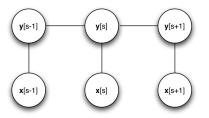
SO-SVM (aka HM-SVM)

$$\begin{array}{l} \min_{\mathbf{w},\xi_i} & \frac{1}{2}\mathbf{w}^{\top}\mathbf{w} + C\sum_i \xi_i \\ s.t. & \forall_{\bar{\mathbf{y}}_i \neq \mathbf{y}_i} : \mathbf{w}^{\top} \Phi(\mathbf{x}_i, \mathbf{y}_i) \ge \mathbf{w}^{\top} \Phi(\mathbf{x}_i, \bar{\mathbf{y}}_i) + 1 - \xi_i, \quad \xi_i \ge 0 \end{array}$$

 Why SO-TSVMs?
 The Model o
 Efficient Training o
 Experiments + Conclusions o

 Lateral algorithm
 Lateral algorithm

Interlude: Label Sequence Learning



first-order Markov property \Rightarrow prediction by Viterbi

kernel function decomposes into

 $\langle \Phi(\mathbf{x}_i, \mathbf{y}_i), \Phi(\mathbf{x}_j, \mathbf{y}_j) \rangle =$

- label-label part
- label-observation part

$$\sum_{s,t} [[y_{i,s-1} = y_{j,t-1} \land y_{i,s} = y_{j,t}]]$$

+
$$\sum_{s,t} [[y_{i,s} = y_{j,t}]]k(x_{i,s}, x_{j,t})$$

		X .	
	0000		
Why SO-TSVMs?	The Model	Efficient Training	Experiments + Conclusions

Incorporating Unlabeled Data

SO-SVM

$$\begin{split} \min_{\mathbf{w},\xi_i} & \frac{1}{2}\mathbf{w}^\top \mathbf{w} + C\sum_i \xi_i \\ s.t. & \forall_{\bar{\mathbf{y}}_i \neq \mathbf{y}_i} : \mathbf{w}^\top \left[\Phi(\mathbf{x}_i,\mathbf{y}_i) - \Phi(\mathbf{x}_i,\bar{\mathbf{y}}_i) \right] \geq 1 - \xi_i, \quad \xi_i \geq 0 \end{split}$$

How to use unlabeled data x_i ?

- For each \mathbf{x}_j , \exists true label \mathbf{y}_j^{true} .
- Margin shall be maximized on $(\mathbf{x}_i, \mathbf{y}_i)$ and $(\mathbf{x}_j, \mathbf{y}_j^{true})$.
- At optimal solution, \mathbf{y}_j^{true} should score highest, thus estimate $\mathbf{y}_i = \arg \max_{\bar{\mathbf{y}}} \mathbf{w}^\top \Phi(\mathbf{x}_i, \bar{\mathbf{y}})$

 Why SO-TSVMs?
 The Model occupation
 Efficient Training occupation
 Experiments + Conclusions occupation

 Semi-Supervised
 Structured
 Output
 SVM

SO-SVM

$$\begin{split} \min_{\mathbf{w},\xi_i} & \frac{1}{2}\mathbf{w}^\top \mathbf{w} + C\sum_i \xi_i \\ s.t. & \forall_{\bar{\mathbf{y}}_i \neq \mathbf{y}_i} : \mathbf{w}^\top \left[\Phi(\mathbf{x}_i,\mathbf{y}_i) - \Phi(\mathbf{x}_i,\bar{\mathbf{y}}_i) \right] \geq 1 - \xi_i, \quad \xi_i \geq 0 \end{split}$$

SO-TSVM

$$\begin{split} \min_{\mathbf{w},\mathbf{y}_{j},\xi_{k}} & \frac{1}{2}\mathbf{w}^{\top}\mathbf{w} + C\sum_{i}\xi_{i} + C^{*}\sum_{j}\xi_{j} \\ s.t. & \forall_{\bar{\mathbf{y}}_{i}\neq\mathbf{y}_{i}}: \mathbf{w}^{\top}\left[\Phi(\mathbf{x}_{i},\mathbf{y}_{i}) - \Phi(\mathbf{x}_{i},\bar{\mathbf{y}}_{i})\right] \geq 1 - \xi_{i}, \quad \xi_{i} \geq 0 \\ \forall_{\bar{\mathbf{y}}_{j}\neq\mathbf{y}_{j}}: \mathbf{w}^{\top}\left[\Phi(\mathbf{x}_{j},\mathbf{y}_{j}) - \Phi(\mathbf{x}_{j},\bar{\mathbf{y}}_{j})\right] \geq 1 - \xi_{j}, \quad \xi_{j} \geq 0 \end{split}$$

The Model

Efficient Training

 $\begin{array}{l} \mathsf{Experiments} + \mathsf{Conclusions} \\ \texttt{000000} \end{array}$

Combinatorial SO-TSVM

SO-TSVM $\begin{array}{l} \underset{\mathbf{w},\mathbf{y}_{j},\xi_{k}}{\min} & \frac{1}{2}\mathbf{w}^{\top}\mathbf{w} + C\sum_{i}\xi_{i} + C^{*}\sum_{j}\xi_{j} \\ s.t. & \forall \overline{\mathbf{y}}_{i}\neq\mathbf{y}_{i}: \mathbf{w}^{\top}\left[\Phi(\mathbf{x}_{i},\mathbf{y}_{i}) - \Phi(\mathbf{x}_{i},\overline{\mathbf{y}}_{i})\right] \geq 1 - \xi_{i}, \quad \xi_{i} \geq 0 \\ \forall \overline{\mathbf{y}}_{j}\neq\mathbf{y}_{j}: \mathbf{w}^{\top}\left[\Phi(\mathbf{x}_{j},\mathbf{y}_{j}) - \Phi(\mathbf{x}_{j},\overline{\mathbf{y}}_{j})\right] \geq 1 - \xi_{j}, \quad \xi_{j} \geq 0 \end{array}$

Problem!

- y_j are discrete!
- Combinatorial task.
- NP-hard!

For binary TSVM, **continuous** techniques very successfull.

[*Low Density Separation*; 2005; Chapelle, Zien]

Why SO-TSVMs?	The Model 0000	Efficient Training	Experiments + Conclusions
	<u>.</u>		

Efficient Optimization for SO-TSVM

SO-TSVM

$$\begin{array}{l} \underset{\mathbf{w},\mathbf{y}_{j},\xi_{k}}{\min} & \frac{1}{2}\mathbf{w}^{\top}\mathbf{w} + C\sum_{i}\xi_{i} + C^{*}\sum_{j}\xi_{j} \\ s.t. & \forall_{\bar{\mathbf{y}}_{i}\neq\mathbf{y}_{i}}: \mathbf{w}^{\top}\left[\Phi(\mathbf{x}_{i},\mathbf{y}_{i}) - \Phi(\mathbf{x}_{i},\bar{\mathbf{y}}_{i})\right] \geq 1 - \xi_{i}, \quad \xi_{i} \geq 0 \\ \forall_{\bar{\mathbf{y}}_{j}\neq\mathbf{y}_{j}}: \mathbf{w}^{\top}\left[\Phi(\mathbf{x}_{j},\mathbf{y}_{j}) - \Phi(\mathbf{x}_{j},\bar{\mathbf{y}}_{j})\right] \geq 1 - \xi_{j}, \quad \xi_{j} \geq 0 \end{array}$$

Key ideas:

- Plug in effective loss function \Rightarrow **unconstrained**.
- Make differentiable.
- Invoke Representer Theorem to use kernels.
- Apply efficient gradient descent method.

The Mode

Efficient Training

Experiments + Conclusions

Effective Loss Functions

SO-TSVM

$$\min_{\mathbf{w}, \mathbf{y}_{j}, \xi_{k}} \quad \frac{1}{2} \mathbf{w}^{\top} \mathbf{w} + C \sum_{i} \xi_{i} + C^{*} \sum_{j} \xi_{j}$$
s.t.
$$\forall_{\mathbf{\bar{y}}_{i} \neq \mathbf{y}_{i}} : \xi_{i} \geq 1 - \mathbf{w}^{\top} [\Phi(\mathbf{x}_{i}, \mathbf{y}_{i}) - \Phi(\mathbf{x}_{i}, \mathbf{\bar{y}}_{i})], \quad \xi_{i} \geq 0$$

$$\forall_{\mathbf{\bar{y}}_{j} \neq \mathbf{y}_{j}} : \xi_{j} \geq 1 - \mathbf{w}^{\top} [\Phi(\mathbf{x}_{j}, \mathbf{y}_{j}) - \Phi(\mathbf{x}_{j}, \mathbf{\bar{y}}_{j})], \quad \xi_{j} \geq 0$$

At optimum, we have following effective losses:

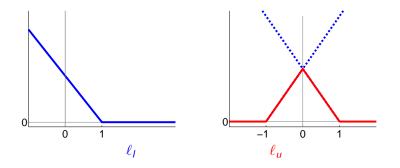
$$\begin{split} \xi_{i} &= \max_{\bar{\mathbf{y}}_{i} \neq \mathbf{y}_{i}} \max \left\{ 1 - \mathbf{w}^{\top} \left[\Phi(\mathbf{x}_{i}, \mathbf{y}_{i}) - \Phi(\mathbf{x}_{i}, \bar{\mathbf{y}}_{i}) \right], 0 \right\} \\ \xi_{j} &= \min_{\mathbf{y}_{j}} \max_{\bar{\mathbf{y}}_{j} \neq \mathbf{y}_{j}} \max \left\{ 1 - \mathbf{w}^{\top} \left[\Phi(\mathbf{x}_{j}, \mathbf{y}_{j}) - \Phi(\mathbf{x}_{j}, \bar{\mathbf{y}}_{j}) \right], 0 \right\} \end{split}$$

 Why SO-TSVMs?
 The Model
 Efficient Training
 Experiments + Conclusions

 0000
 0000000
 0000000

Original Effective Loss Functions

$$\begin{aligned} \xi_i &= \max_{\bar{\mathbf{y}}_i \neq \mathbf{y}_i} \ell_l \left(\mathbf{w}^\top \Phi(\mathbf{x}_i, \mathbf{y}_i) - \mathbf{w}^\top \Phi(\mathbf{x}_i, \bar{\mathbf{y}}_i) \right) \\ \xi_j &= \min_{\mathbf{y}_j} \max_{\bar{\mathbf{y}}_j \neq \mathbf{y}_j} \ell_u \left(\mathbf{w}^\top \Phi(\mathbf{x}_j, \mathbf{y}_j) - \mathbf{w}^\top \Phi(\mathbf{x}_j, \bar{\mathbf{y}}_j) \right) \end{aligned}$$



Why SO-TSVMs?	The Model 0000	Efficient Training ○○●○○○○○	Experiments + Conclusions
Differentiable	Loss Function	ons	

 $\begin{aligned} \xi_i &= \max_{\bar{\mathbf{y}}_i \neq \mathbf{y}_i} \ell_l \left(\mathbf{w}^\top \Phi(\mathbf{x}_i, \mathbf{y}_i) - \mathbf{w}^\top \Phi(\mathbf{x}_i, \bar{\mathbf{y}}_i) \right) \\ \xi_j &= \min_{\mathbf{y}_j} \max_{\bar{\mathbf{y}}_j \neq \mathbf{y}_j} \ell_u \left(\mathbf{w}^\top \Phi(\mathbf{x}_j, \mathbf{y}_j) - \mathbf{w}^\top \Phi(\mathbf{x}_j, \bar{\mathbf{y}}_j) \right) \end{aligned}$

_1

0

 ℓ_{μ} . derivative

1

0

0

1

l

Why SO-TSVMs?	The Model 0000	Efficient Training	Experiments + Conclusions
Differentiable L	oss Functions		

))

$$\begin{aligned} \xi_i &= \max_{\bar{\mathbf{y}}_i \neq \mathbf{y}_i} \ell_l \left(\mathbf{w}^\top \Phi(\mathbf{x}_i, \mathbf{y}_i) - \mathbf{w}^\top \Phi(\mathbf{x}_i, \bar{\mathbf{y}}_i) \right. \\ \xi_j &= \min_{\mathbf{y}_j} \max_{\bar{\mathbf{y}}_i \neq \mathbf{y}_j} \ell_u \left(\mathbf{w}^\top \Phi(\mathbf{x}_j, \mathbf{y}_j) - \mathbf{w}^\top \Phi(\mathbf{x}_j, \bar{\mathbf{y}}_j) \right. \end{aligned}$$

softmax not differentiable \Rightarrow use **softmax**

$$\max_{\tilde{\mathbf{y}}\neq\mathbf{y}_k}(s(\tilde{\mathbf{y}})) \ = \ \frac{1}{\rho}\log\left(1+\sum\nolimits_{\tilde{\mathbf{y}}\neq\mathbf{y}_k}(e^{\rho s(\tilde{\mathbf{y}})}-1)\right)$$

approximates max: lim_{p→∞} smax(s(ỹ)) = max{s(ỹ)}
 approximates sum: lim_{p→0} smax(s(ỹ)) = ∑ s(ỹ)

 Why SO-TSVMs?
 The Model occord
 Efficient Training occord
 Experiments + Conclusions occord

 Unconstrained Differentiable Optimization

Unconstrained Differentiable SO-TSVM

$$\min_{\mathbf{w},\xi_k} \quad \frac{1}{2} \mathbf{w}^\top \mathbf{w} \\ + C \sum_i \max_{\mathbf{y}_i \neq \mathbf{y}_i} \ell_l \left(\mathbf{w}^\top \Phi(\mathbf{x}_i, \mathbf{y}_i) - \mathbf{w}^\top \Phi(\mathbf{x}_i, \mathbf{\bar{y}}_i) \right) \\ + C^* \sum_j \min_{\mathbf{y}_j} \max_{\mathbf{\bar{y}}_j \neq \mathbf{y}_j} \ell_u \left(\mathbf{w}^\top \Phi(\mathbf{x}_j, \mathbf{y}_j) - \mathbf{w}^\top \Phi(\mathbf{x}_j, \mathbf{\bar{y}}_j) \right)$$

- Determine optimial **y**_j (Viterbi); repeatedly update.
- Symmetrized loss ℓ_u can account for switching $\mathbf{y}_j \leftrightarrow \bar{\mathbf{y}}_j$.
- \Rightarrow Can optimize **w** by gradient descent!

The Model

Efficient Training

Experiments + Conclusions

How to Use Kernels?

Representer Theorem

$$\mathbf{w} = \sum_{k=1}^{n+m} \sum_{\mathbf{y} \in \mathcal{Y}(\mathbf{x}_k)} \alpha_{k,\mathbf{y}} \Phi(\mathbf{x}_k,\mathbf{y})$$

• Plug into optimization problem.

•
$$\mathbf{w}^{\top} \Phi(\mathbf{x}_i, \mathbf{y}_i) = \sum_k \sum_{\mathbf{y}} \alpha_{k, \mathbf{y}} \underbrace{\Phi(\mathbf{x}_k, \mathbf{y})^{\top} \Phi(\mathbf{x}_i, \mathbf{y}_i)}_{k((\mathbf{x}_k, \mathbf{y}), (\mathbf{x}_i, \mathbf{y}_i))}$$

• Similarly for $\mathbf{w}^{\top} \Phi(\mathbf{x}_j, \mathbf{y}_j)$ and $\mathbf{w}^{\top} \mathbf{w}$.

• Carry gradients through:
$$\frac{\partial obj}{\partial \alpha_{k,\mathbf{y}}} = \frac{\partial obj}{\partial \mathbf{w}} \cdot \frac{\partial \mathbf{w}}{\partial \alpha_{k,\mathbf{y}}}$$

Why SO-TSVMs?	The Model 0000	Efficient Training	Experiments + Conclusions
Working Set	Approach		

Problems: Exponential Complexity!

- Exponentially many variables $\alpha_{k,y}$ to optimize.
- Also, exponentially many arguments y's in (soft)max.

Observation:

- Only $(\mathbf{x}_i, \bar{\mathbf{y}}_i)$ with positive loss relevant.
- Same for $(\mathbf{x}_j, \bar{\mathbf{y}}_j)$.

Solution: Working Set Approach

- Labeled points: Collect worst margin violators y
 _i (maximum loss; found by 2-best-decoder).
- Unlabeled points: Both \mathbf{y}_j and $\mathbf{\bar{y}}_j$ found by 2-best-decoder.

Alternating Algorithm

Algorithm

Input: labeled points $\{(\mathbf{x}_i, \mathbf{y}_i)\}$, unlabeled points $\{\mathbf{x}_j\}$. **Output:** working set \mathcal{W} and associated $\alpha_{k,\mathbf{y}}$.

Initialize $\mathcal{W} \leftarrow \{(\mathbf{x}_i, \mathbf{y}_i)\}.$

Alternate until convergence:

- - add $\{(\mathbf{x}_i, \bar{\mathbf{y}}_i^*)\}$ to \mathcal{W} (worst margin violators)
 - find {**y**_j*} (highest scoring labels)
 - add $\{(\mathbf{x}_j, \bar{\mathbf{y}}_j^*)\}$ to \mathcal{W} (2nd highest scoring labels)
- **2** Optimize α by preconditioned Conjugate Gradient.

Why SO-TSVMs?	The Model 0000	Efficient Training 00000000	Experiments + Conclusions
Computational	Experiments		

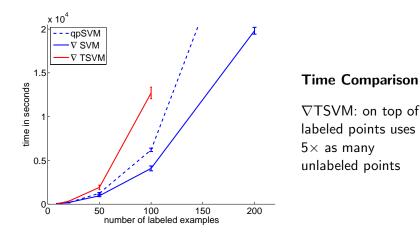
- Time comparison to QP-based optimization.
- Comparison to supervised learning:
 - Multiclass classification: Text classification.
 - Label sequence learning: Named entity recognition.
- Combination / comparison with Laplacian kernel SO-SVM, another semi-supervised SO learning approach.

The Model

Efficient Training

 $\begin{array}{l} \mathsf{Experiments} + \mathsf{Conclusions} \\ \bullet \circ \circ \circ \circ \circ \circ \end{array}$

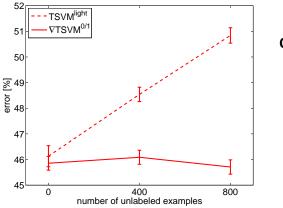
Optimization Efficiency



- CG faster than QP-solving...
- ... even when including unlabeled examples.

Why SO-TSVMs? The Model Efficient Training Experiments + Conclusions

Cora Dataset [Multiclass]



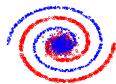
Cora Dataset

- text classification
- multiclass:
 8 classes
- 200 labeled examples

- Combinatorial optimization: error increases.
- Continuous optimization: accuracy essentially unchanged.

 Why SO-TSVMs?
 The Model occord
 Efficient Training occord
 Experiments + Conclusions occord

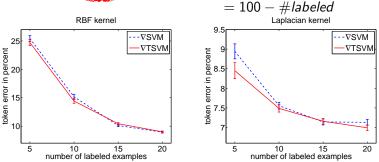
 Galaxy Dataset [Laplacian Kernel]



Galaxy Dataset (artificial data)

- [Lafferty et al; ICML 2004]
- label sequence learning

#unlabeled

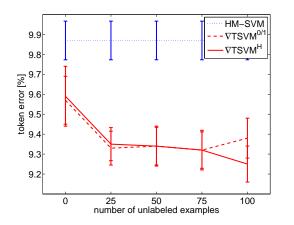


• Here, ∇ SO-TSVM only slightly better than ∇ SO-SVM.

The Model 0000 Efficient Training

 $\begin{array}{l} \mathsf{Experiments} + \mathsf{Conclusions} \\ \circ \circ \circ \bullet \circ \circ \end{array}$

Spanish News Wire Dataset



Spanish News Wire Dataset

- named entity recognition
- label sequence learning
- 9 types of labels

• Here, ∇ SO-TSVM clearly outperforms HM-SVM.

Summary

- TSVM for structured outputs:
 - Use information from unlabeled (test) examples.
 - Unconstrained, differentiable optimization criterion.
 - Efficient conjugate gradient optimization.
- SVM criterion is convex; TSVM criterium has many local minima.
- Empirically:
 - Often, no improvement but also no deterioration.
 - Sometimes, unlabeled data increase accuracy significantly.

Thank you!

Why	SO	T	SV/	Ms	
VVhy	50		J V	1113	

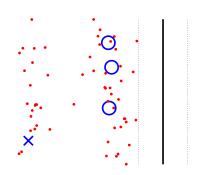
The Model

Efficient Training

Experiments + Conclusions

Class Balancing

binary classification: **balancing** of class sizes to avoid degenerate solutions.



Balancing for Structured Outputs

- soft constraints on label frequencies can be implemented
- however, empirically not necessary