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Semi-Supervised SVM (“Transductive SVM”)

original SVM

binary

supervised

⇓
TSVM

binary

semi-supervised
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Structured Output SVM

original SVM

binary

supervised

⇒ SO-SVM

structured output

supervised

True multiclass (not 1-vs-rest or 1-vs-1).

Accurate label sequence learning [Nguyen, Guo; ICML 2007].

More complex structures (eg parse trees, RNA secondary
structures).
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Orthogonal SVM Extensions

original SVM

binary
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Structured Output Semi-Supervised SVM

original SVM

binary

supervised

⇒ SO-SVM

structured output

supervised

⇓ ⇓
TSVM

binary

semi-supervised

⇒ SO-TSVM

structured output

semi-supervised



Why SO-TSVMs? The Model Efficient Training Experiments + Conclusions

Outline

1 Why Semi-Supervised Structured Output SVMs?

2 SO-TSVM – The Model
Structured Output SVM
Semi-Supervised Structured Output SVMs

3 Efficient SO-TSVM Training
Unconstrained SO-TSVM Objective
Differentiable SO-TSVM Training
Kernelized SO-TSVM in the Primal
Conjugate Gradient Working Set Algorithm

4 Experiments and Conclusions
Accuracy Sometimes Unchanged...
...and Sometimes Improved



Why SO-TSVMs? The Model Efficient Training Experiments + Conclusions

Structured Output SVM

Use joint feature map Φ : X × Y → H.

Training: find w such that

∀i : ∀ȳi 6=yi
: w>Φ(xi , yi ) > w>Φ(xi , ȳi )

Prediction:
x 7→ y := arg max

y
w>Φ(x, y)

SO-SVM (aka HM-SVM)

min
w,ξi

1

2
w>w + C

∑
i

ξi

s.t. ∀ȳi 6=yi
: w>Φ(xi , yi ) ≥ w>Φ(xi , ȳi ) + 1− ξi , ξi ≥ 0
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Interlude: Label Sequence Learning

first-order Markov property
⇒ prediction by Viterbi

kernel function 〈Φ(xi , yi ),Φ(xj , yj)〉
decomposes into =

• label-label part
∑

s,t
[[yi ,s−1 = yj ,t−1 ∧ yi ,s = yj ,t ]]

• label-observation part +
∑

s,t
[[yi ,s = yj ,t ]]k(xi ,s , xj ,t)
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Incorporating Unlabeled Data

SO-SVM

min
w,ξi

1

2
w>w + C

∑
i

ξi

s.t. ∀ȳi 6=yi
: w> [Φ(xi , yi )− Φ(xi , ȳi )] ≥ 1− ξi , ξi ≥ 0

How to use unlabeled data xj ?

For each xj , ∃ true label yj
true .

Margin shall be maximized on (xi , yi ) and (xj , yj
true).

At optimal solution, yj
true should score highest, thus estimate

yj = arg maxȳ w>Φ(xj , ȳ)
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Semi-Supervised Structured Output SVM

SO-SVM

min
w,ξi

1

2
w>w + C

∑
i

ξi

s.t. ∀ȳi 6=yi
: w> [Φ(xi , yi )− Φ(xi , ȳi )] ≥ 1− ξi , ξi ≥ 0

SO-TSVM

min
w,yj ,ξk

1

2
w>w + C

∑
i

ξi + C ∗
∑

j

ξj

s.t.
∀ȳi 6=yi

: w> [Φ(xi , yi )− Φ(xi , ȳi )] ≥ 1− ξi , ξi ≥ 0
∀ȳj 6=yj

: w> [Φ(xj , yj)− Φ(xj , ȳj)] ≥ 1− ξj , ξj ≥ 0
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Combinatorial SO-TSVM

SO-TSVM

min
w,yj ,ξk

1

2
w>w + C

∑
i

ξi + C ∗
∑

j

ξj

s.t.
∀ȳi 6=yi

: w> [Φ(xi , yi )− Φ(xi , ȳi )] ≥ 1− ξi , ξi ≥ 0
∀ȳj 6=yj

: w> [Φ(xj , yj)− Φ(xj , ȳj)] ≥ 1− ξj , ξj ≥ 0

Problem!

yj are discrete!

Combinatorial task.

NP-hard!

For binary TSVM, continuous
techniques very successfull.

[Low Density Separation; 2005;
Chapelle, Zien]
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Efficient Optimization for SO-TSVM

SO-TSVM

min
w,yj ,ξk

1

2
w>w + C

∑
i

ξi + C ∗
∑

j

ξj

s.t.
∀ȳi 6=yi

: w> [Φ(xi , yi )− Φ(xi , ȳi )] ≥ 1− ξi , ξi ≥ 0
∀ȳj 6=yj

: w> [Φ(xj , yj)− Φ(xj , ȳj)] ≥ 1− ξj , ξj ≥ 0

Key ideas:

Plug in effective loss function ⇒ unconstrained.

Make differentiable.

Invoke Representer Theorem to use kernels.

Apply efficient gradient descent method.
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Effective Loss Functions

SO-TSVM

min
w,yj ,ξk

1

2
w>w + C

∑
i

ξi + C ∗
∑

j

ξj

s.t.
∀ȳi 6=yi

: ξi ≥ 1−w> [Φ(xi , yi )− Φ(xi , ȳi )] , ξi ≥ 0
∀ȳj 6=yj

: ξj ≥ 1−w> [Φ(xj , yj)− Φ(xj , ȳj)] , ξj ≥ 0

At optimum, we have following effective losses:

ξi = max
ȳi 6=yi

max
{

1−w> [Φ(xi , yi )− Φ(xi , ȳi )] , 0
}

ξj = min
yj

max
ȳj 6=yj

max
{

1−w> [Φ(xj , yj)− Φ(xj , ȳj)] , 0
}



Why SO-TSVMs? The Model Efficient Training Experiments + Conclusions

Original Effective Loss Functions

ξi = max
ȳi 6=yi

`l

(
w>Φ(xi , yi )−w>Φ(xi , ȳi )

)
ξj = min

yj

max
ȳj 6=yj

`u

(
w>Φ(xj , yj)−w>Φ(xj , ȳj)

)

0 1
0

−1 0 1
0

`l `u

, derivative
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Differentiable Loss Functions

ξi = max
ȳi 6=yi

`l

(
w>Φ(xi , yi )−w>Φ(xi , ȳi )

)
ξj = min

yj

max
ȳj 6=yj

`u

(
w>Φ(xj , yj)−w>Φ(xj , ȳj)

)

0 1
0

−1 0 1

0

`l `u, derivative
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Differentiable Loss Functions

ξi = smax
ȳi 6=yi

`l

(
w>Φ(xi , yi )−w>Φ(xi , ȳi )

)
ξj = min

yj

smax
ȳj 6=yj

`u

(
w>Φ(xj , yj)−w>Φ(xj , ȳj)

)

softmax not differentiable ⇒ use softmax

smax
ỹ 6=yk

(s(ỹ)) =
1

ρ
log

(
1 +

∑
ỹ 6=yk

(eρs(ỹ) − 1)
)

approximates max: limρ→∞ smax(s(ỹ)) = max{s(ỹ)}
approximates sum: limρ→0 smax(s(ỹ)) =

∑
s(ỹ)
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Unconstrained Differentiable Optimization

Unconstrained Differentiable SO-TSVM

min
w,ξk

1

2
w>w

+C
∑

i

smax
ȳi 6=yi

`l

(
w>Φ(xi , yi )−w>Φ(xi , ȳi )

)
+C ∗

∑
j

min
yj

smax
ȳj 6=yj

`u

(
w>Φ(xj , yj)−w>Φ(xj , ȳj)

)

Determine optimial yj (Viterbi); repeatedly update.

Symmetrized loss `u can account for switching yj ↔ ȳj .

⇒ Can optimize w by gradient descent!
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How to Use Kernels?

Representer Theorem

w =
n+m∑
k=1

∑
y∈Y(xk )

αk,yΦ(xk , y)

Plug into optimization problem.

w>Φ(xi , yi ) =
∑

k

∑
y

αk,y Φ(xk , y)>Φ(xi , yi )︸ ︷︷ ︸
k((xk ,y),(xi ,yi ))

Similarly for w>Φ(xj , yj) and w>w.

Carry gradients through:
∂obj

∂αk,y
=

∂obj

∂w
· ∂w

∂αk,y
.
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Working Set Approach

Problems: Exponential Complexity!

Exponentially many variables αk,y to optimize.

Also, exponentially many arguments ȳ’s in (soft)max.

Observation:

Only (xi , ȳi ) with positive loss relevant.

Same for (xj , ȳj).

Solution: Working Set Approach

Labeled points: Collect worst margin violators ȳi

(maximum loss; found by 2-best-decoder).

Unlabeled points: Both yj and ȳj found by 2-best-decoder.
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Alternating Algorithm

Algorithm

Input: labeled points {(xi , yi )}, unlabeled points {xj}.
Output: working set W and associated αk,y.

Initialize W ← {(xi , yi )}.
Alternate until convergence:

1 Augment working set W
add {(xi , ȳ∗i )} to W (worst margin violators)
find {yj

∗} (highest scoring labels)
add

{
(xj , ȳ∗j )

}
to W (2nd highest scoring labels)

2 Optimize α by preconditioned Conjugate Gradient.
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Computational Experiments

Time comparison to QP-based optimization.

Comparison to supervised learning:

Multiclass classification: Text classification.

Label sequence learning: Named entity recognition.

Combination / comparison with Laplacian kernel SO-SVM,
another semi-supervised SO learning approach.
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Optimization Efficiency
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Time Comparison

∇TSVM: on top of
labeled points uses
5× as many
unlabeled points

CG faster than QP-solving...

... even when including unlabeled examples.
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Cora Dataset [Multiclass]
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TSVMlight
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Cora Dataset

text
classification

multiclass:
8 classes

200 labeled
examples

Combinatorial optimization: error increases.

Continuous optimization: accuracy essentially unchanged.
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Galaxy Dataset [Laplacian Kernel]

Galaxy Dataset (artificial data)

[Lafferty et al; ICML 2004]

label sequence learning

#unlabeled
= 100−#labeled
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Here, ∇SO-TSVM only slightly better than ∇SO-SVM.
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Spanish News Wire Dataset
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HM−SVM
∇ TSVM0/1

∇ TSVMH Spanish News
Wire Dataset

named entity
recognition

label sequence
learning

9 types of
labels

Here, ∇SO-TSVM clearly outperforms HM-SVM.
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Conclusions

Summary

TSVM for structured outputs:

Use information from unlabeled (test) examples.
Unconstrained, differentiable optimization criterion.
Efficient conjugate gradient optimization.

SVM criterion is convex; TSVM criterium has many local
minima.

Empirically:

Often, no improvement – but also no deterioration.
Sometimes, unlabeled data increase accuracy significantly.

Thank you!
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Class Balancing

binary classification:
balancing of class sizes
to avoid degenerate solu-
tions.

Balancing for Structured Outputs

soft constraints on label frequencies can be implemented

however, empirically not necessary
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