Transductive Support Vector Machines for
Structured Variables

Alexander Zien*t
UIf Brefeld*
Tobias Scheffert

* MPI for Biological Cybernetics, Empirical Inference Dept.
1 Friedrich Miescher Laboratory, Machine Learning for Bioinformatics
1 MPI for Informatics, Research Group Machine Learning

June 21, 2007

. l I I I max planck institut
informatik




Why SO-TSVMs?
Support Vector Machine
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Why SO-TSVMs?

Structured Output SVM

original SVM SO-SVM
@ binary @ structured output
@ supervised @ supervised

@ True multiclass (not 1-vs-rest or 1-vs-1).
@ Accurate label sequence learning [Nguyen, Guo; ICML 2007].

@ More complex structures (eg parse trees, RNA secondary
structures).



Why SO-TSVMs?
Orthogonal SVM Extensions
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Structured Output Semi-Supervised SVM
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Why SO-TSVMs?
@ Why Semi-Supervised Structured Qutput SVMs?

© SO-TSVM - The Model
@ Structured Output SVM
@ Semi-Supervised Structured Output SVMs

© Efficient SO-TSVM Training
@ Unconstrained SO-TSVM Objective
o Differentiable SO-TSVM Training
o Kernelized SO-TSVM in the Primal
o Conjugate Gradient Working Set Algorithm

@ Experiments and Conclusions
@ Accuracy Sometimes Unchanged...
@ ...and Sometimes Improved



The Model
[ Ie]

Structured Output SVM

Use joint feature map ¢ : X x Y — H.
Training: find w such that
vI' : Vy,-;éy,- : WT(D(XiaYI) > WT(D(XiaYi)

Prediction:
X — y ;= argmaxw ' ®(x,y)
y

SO-SVM (aka HM-SVM)

: 1
min EwTw—i— CZ&;
1

W»gi

st Vg o W O(x;,y) > wid(x,§;)+1-¢&, &>0




The Model
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Interlude: Label Sequence Learning

yls-1] yls] yls+1]

first-order Markov property
= prediction by Viterbi

kernel function (®(xi, i), P(x),Y)))
decomposes into =

e label-label part ZS t[[y,;s,l =Yjt-1\Yis = Yjtll

e label-observation part + Z t[[y,-75 = yjtllk(Xis, Xj.t)
s,



The Model
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Incorporating Unlabeled Data

SO-SVM

: 1 +
Tlgr,\ W w + Czi:@-

st Vg o W [(xi,y) — O(x,¥)] = 1-¢&, &=>0

How to use unlabeled data x; ?

@ For each x;, 3 true label y;"°.

@ Margin shall be maximized on (x;,y;) and (x;,y;""¢).

@ At optimal solution, y;"“ should score highest, thus estimate

yj = arg maxy WTCD(xj,y)



The Model
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Semi-Supervised Structured Output SVM

SO-SVM
: 1 +
Tlg SW W + Czi:{,-

st gy W [O(x,y) —O(x, ¥i)] > 1-&, &>0

SO-TSVM
2 1 T * .
gl W+CZ’:£,+C EJ:EJ

s.t. Vyﬁéy{ : WI [(D(X,', yl) - (D(X,', YI)]
iy W [P(x), ;) — @(x;,¥))]

1-&, &=>0




Combinatorial SO-TSVM

SO-TSVM
. 1 -

= + C i+ C* i
RS A DR D I

s.t. iy - W [O(xi,yi) — O(xi,¥7)]

1-¢, &=>0
V) w' [®(x,y)) — (%), ¥))]

1-¢, §=20

(VAN

v

Problem!

For binary TSVM, continuous
e y; are discrete!

techniques very successfull.
S Egtinatotalh s [Low Density Separation; 2005;
© NP-hard! Chapelle, Zien]




Efficient Training

Efficient Optimization for SO-TSVM

SO-TSVM

min %WTW+CZ§;+C*Z§-
i J

vajvgk

st A WI [O(xi,yi) = ®(x,¥))] = 1 =&, &§=0
Vyity - W [P(x),y)) = B(x,¥)] 2 1=, & =0

Key ideas:
@ Plug in effective loss function = unconstrained.
e Make differentiable.
@ Invoke Representer Theorem to use kernels.

o Apply efficient gradient descent method.



Efficient Training
[ 1]

Effective Loss Functions

SO-TSVM
. 1 .
min EwTw+CZ§i+C ZEJ
i j

W7yj7§k
y,;éy, L& > 1wl [O(x;,y) — O(x;,¥i)], & >0

>
s.t. = _
Vyty 0 & = T—wl [O(x),y)) = B(x;, ¥;)], & >0

At optimum, we have following effective losses:
§i = max max{ 1—w' [®(x;,y/) — (x;,¥)], 0 }
ity

= 1—w T o y o "_' 50
G = minmaxmax {1-w! [0, (5,50}



Efficient Training
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Original Effective Loss Functions

& = max/{, (WTd)(X,',y,‘) - WT(D(X/';)_H))

YiFYi
§j = minmax/, (WTCD(XJ',YJ) - WT(D(vayJ'))
Vi Yi#y;

4 ly



Efficient Training
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Differentiable Loss Functions

& = max/{, (WTd)(X,',y,‘) - WTd’(Xi;)_!i))

YiFYi
§j = minmax/, (WTCD(XJ',YJ) - WTq)(vayj))
Vi Yi#y;

N\

0 1 -1 0 1
7 ¢,, derivative




Efficient Training
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Differentiable Loss Functions

& = smax/{, (wT¢(x,-,y;) - WTq’(Xh)—/i))

YiFYi
§j = minsmax/,, ( T¢(XJ,yj)—WT¢(Xj7)_/j)>
Vi Yi#yj

softmax not differentiable = use softmax

1 3
— = ps(¥) _
max(s(§)) = log(1+3 (e”9) 1))

@ approximates max:  lim,_.o smax(s(¥)) = max{s(¥)}
)

@ approximates sum:  lim,_osmax(s(¥)) = >_ s(¥)



Efficient Training
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Unconstrained Differentiable Optimization

Unconstrained Differentiable SO-TSVM

. 1
min W W
W?ék

+C ) smax/ (wTQJ Xi,yi) —w' o Xi,_i>
e (7ot w05

* T Y
+c Z";,'”Sy?;a” (w7000 3) ~ w7005 5)

@ Determine optimial y; (Viterbi); repeatedly update.
@ Symmetrized loss /7, can account for switching y; < y;.

e = Can optimize w by gradient descent!



Efficient Training
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How to Use Kernels?

Representer Theorem

n+m

Z Z ak,y¢(xk> Y)

k=1 yeY(x«)

o Plug into optimization problem.

ow' X,, , Zzaky Xk,y ¢(Xi,y,')
k((xk,y),(xi,y1))

o Similarly for w'®(x;,y;) and w'w.

dobj  dobj Ow
Doy T Ow Doy

o Carry gradients through:



Efficient Training
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Working Set Approach

Problems: Exponential Complexity!
@ Exponentially many variables o, , to optimize.

@ Also, exponentially many arguments y’s in (soft)max.

Observation:
@ Only (x;,y;) with positive loss relevant.

e Same for (x;,y;).

Solution: Working Set Approach

@ Labeled points: Collect worst margin violators y;
(maximum loss; found by 2-best-decoder).

@ Unlabeled points: Both y; and y; found by 2-best-decoder.



Efficient Training
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Alternating Algorithm

Algorithm

Input: labeled points {(x;,y;)}, unlabeled points {x;}.
Output: working set VW and associated c y.

Initialize W — {(x;,yi)}.
Alternate until convergence:

© Augment working set W

e add {(x;,¥;)} to W (worst margin violators)
o find {y;*} (highest scoring labels)
e add {(xj,yf)} to W (2nd highest scoring labels)

@ Optimize « by preconditioned Conjugate Gradient.




Experiments 4 Conclusions

Computational Experiments

@ Time comparison to QP-based optimization.

@ Comparison to supervised learning:

e Multiclass classification: Text classification.

o Label sequence learning: Named entity recognition.

e Combination / comparison with Laplacian kernel SO-SVM,
another semi-supervised SO learning approach.
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Optimization Efficiency

4
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S 4. VTSVM: on top of
c .
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@ CG faster than QP-solving...

@ ... even when including unlabeled examples.
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Cora Dataset [Multiclass]

52 ‘ : ; ‘
- - -Tsvm'on
51/ — OTSVMO™? I |
Cora Dataset
50+ |
@ text
=497 } ] classification
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5 48 ] e multiclass:
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47t 1
@ 200 labeled
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A 400 800
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e Combinatorial optimization: error increases.

e Continuous optimization: accuracy essentially unchanged.
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Galaxy Dataset [Laplacian Kernel]

Galaxy Dataset (artificial data)
o [Lafferty et al; ICML 2004]

@ label sequence learning

@ Funlabeled
= 100 — #£/abeled
RBF kernel Laplacian kernel
9.5
25 ---0SVM
= = 9 } —OTSWM
Q Q *
o IS
g 20 885
£ £
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@ Here, VSO-TSVM only slightly better than VSO-SVM.
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Spanish News Wire Dataset

“““ HM-SVM
9ok | | 1 - - oTsvMO )
— OTsumH Spanish News
9.8 ™™ | :
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c 95
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@ Here, VSO-TSVM clearly outperforms HM-SVM.
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Conclusions

Summary

@ TSVM for structured outputs:
o Use information from unlabeled (test) examples.
e Unconstrained, differentiable optimization criterion.
o Efficient conjugate gradient optimization.
@ SVM criterion is convex; TSVM criterium has many local
minima.
o Empirically:
o Often, no improvement — but also no deterioration.
e Sometimes, unlabeled data increase accuracy significantly.

Thank you!
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Class Balancing

binary classification: 0 :

balancing of class sizes S .o

to avoid degenerate solu- . O

tions. : .
.:._ . O
X S
04 &

Balancing for Structured Outputs
@ soft constraints on label frequencies can be implemented

@ however, empirically not necessary
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